CRYSTAL DATA AND SOME STRUCTURAL FEATURES OF γ -AMINOBUTYRIC ACID, 3-AMINOPROPANE SULFONIC ACID AND THEIR DERIVATIVES

Ken-ichi Tomita

Faculty of Pharmaceutical Sciences, Osaka University

Toneyama, Toyonaka, Osaka, Japan

(Received in Japan 1 June 1971; received in UK for publication 10 June 1971)

It is well known that the proteins consist of over twenty α -amino acids. However, many ω -amino acids or ω -amino sulfonic acids have been isolated from various sources of the animals and plants.

Numerous investigations have been pointed to accumulate data as to the metabolic pathway or the knowledge of physiological functions of these particular compounds, and it has been shown that the certain ω -amino acids or ω -amino sulfonic acids strongly influence the behaviour of neurones when applied extracellularly. One of the most important results was that γ -aminobutyric acid and γ -amino- β -hydroxybutyric acid originally synthesized by M.Tomita¹⁾ were found to have a potent inhibitory action against epileptic seizure²⁾.

It is of most interest to investigate systematically the molecular structure of such important compounds, and elucidate the relation of the molecular conformation to its specific physiological action. Since 1965, the author and collaborators have been deeply interesting about such substantial points, and Table 1 presents the crystal data of γ -aminobutyric acid, 3-aminopropane sulfonic acid and their derivatives so far investigated by X-rays in this laboratory.

It was found that there are some common features about the molecular structure of these compounds as follows. 1) Molecule is the so-called zwitterionic in the crystalline state as in α -amino acids. 2) Molecule has the planar carbon skeletal conformation in crystal of the compounds so far investigated except γ -aminobutyric acid. On the other hand, no one has such planar conformation in glycine³⁾, β -alanine⁴⁾, ε -aminocapronic acid⁵⁾ and taurine⁶⁾. 3) Molecule

except γ -aminocrotonic acid and γ -aminobutyric acid has trans-zigzag skeletal configuration including the amino-nitrogen and carboxyl-carbon atoms in γ -amino acids or the amino-nitrogen and sulfonyl-sulfur atoms in γ -amino sulfonic acids.

The detailed crystal structure analysis of each compound is now in progress and will be published elsewhere in the near future.

T	ab	le	1
	αIJ	TC	

COMPOUND*1)	(g.cm ⁻³)	CRYSTAL System	SPACE GROUP	2	(Å)	ь (\$)	د (ألم)	(*)	β (*)	Y (*)	DATA 2)	STRUCTURE DETERMINATION
GABA	1.226	monoclinic	P2 ₁ /c	4	7.18	10.18	1.26	90.0	111.4	90.0	7	determined 7)
GABA HC1	1.362	monoclinic	P2 ₁	2	5.93	6.54	9.09	90.0	100.0	90.0	7	determined 8)
GABOB	1.459	monoclinic	P2 ₁ /c	4	7.43	8.29	9.34	90.0	110.9	90.0	•	determined 7)
GACA HBr	1.830	monoclinic	P2 ₁	2	7.82	6.51	6.67	90.0	104.0	90.0	F	determined 9)
GGBA HBr	1.664	triclinic	ΡĪ	2	7.94	9.36	7.78	103.2	115.5	61.5	P	determined 10
GGBA HC1	1.429	triclinic	PĨ	2	7.41	9.12	7.25	101.5	112.4	65.2	· •	determined 10
GAPSA (a)	1.610	orthorhombic	Pmn2 ₁	2	7.06	5.49	7.43	90.0	90.0	90.0	c	determined 11
CAPSA(8)	1.599	orthorhombic	P2 ₁ 2 ₁ 2 ₁	4	14.12	5.50	7.43	90.0	90.0	90.0	F	in progress
BABOPSA	1.686	orthorhombic	Pbca	8	9.91	12.03	10.25	90.0	90.0	90.0	С	in progress

^{*1)} Abbreviations: GABA, \(\gamma\)-aminobutyric acid; GABOB, \(\gamma\)-amino-\(\text{8}\)-hydroxybutyric acid; GACA, \(\gamma\)-aminocrotonic acid; GABA, \(\gamma\)-aminopropane sulfonic acid (homotaurine); \(\text{GABOPSA}, \) 3-amino-2-hydroxypropane sulfonic acid; \(\text{CABOPSA}, \) 3-amino-2

REFERENCES

- 1) M.Tomita, Z. physiol. Chem., 124, 253 (1923).
- 2) T.Hayashi and K.Nagai, Proc. 20th Int. Physiol. Cong., p.410 (1956).
- 3) R.E.Marsh, Acta Cryst., 11, 654 (1958); Y.Iitaka, ibid., 13, 35 (1960).
- 4) P.Jose, L.M.Pant and A.B.Biswas, Acta Cryst., 17, 24 (1964).
- 5) A.Takenaka, T.Yamamoto, K.Yamasaki, A.Furusaki and I.Nitta, <u>Kansei Gakuin</u> Univ. Ann. Studies, 18, 127 (1969).
- 6) Y.Okaya, Acta Cryst., 21, 726 (1966).
- K.Tomita, T.Fujiwara, H.Higashi and M.Harada, <u>Abst. Ann. Meeting of Pharm.</u>
 <u>Soc. of Japan</u> (1971).
- 8) K. Tomita, Jap. J. Brain Physiol., 61, 1 (1965).
- 9) K. Tomita, Jap. J. Brain Physiol., 71, 9 (1966).
- 10) T.Maeda, T.Fujiwara and K.Tomita, Abst. Ann. Meeting of Chem. Soc. of Japan (1970).
- 11) S.Ueoka, T.Fujiwara, K.Tomita and S.Seki, Abst. Ann. Meeting of Pharm. Soc. of Japan (1968).

^{*2)} Intensity data were collected by film (F) or counter (C) method.